Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Sci Total Environ ; 892: 164496, 2023 Sep 20.
Article in English | MEDLINE | ID: covidwho-2327808

ABSTRACT

COVID-19 has notably impacted the world economy and human activities. However, the strict urban lockdown policies implemented in various countries appear to have positively affected pollution and the thermal environment. In this study, Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) and aerosol optical depth (AOD) data were selected, combined with Sentinel-5P images and meteorological elements, to analyze the changes and associations among air pollution, LST, and urban heat islands (UHIs) in three urban agglomerations in mainland China during the COVID-19 lockdown. The results showed that during the COVID-19 lockdown period (February 2020), the levels of the AOD and atmospheric pollutants (fine particles (PM2.5), NO2, and CO) significantly decreased. Among them, PM2.5 and NO2 decreased the most in all urban agglomerations, by >14 %. Notably, the continued improvement in air pollution attributed to China's strict control policies could lead to overestimation of the enhanced air quality during the lockdown. The surface temperature in all three urban agglomerations increased by >1 °C during the lockdown, which was mainly due to climate factors, but we also showed that the lockdown constrained positive LST anomalies. The decrease in the nighttime urban heat island intensity (UHIInight) in the three urban agglomerations was greater than that in the daytime quantity by >25 %. The reduction in surface UHIs at night was mainly due to the reduced human activities and air pollutant emissions. Although strict restrictions on human activities positively affected air pollution and UHIs, these changes were quickly reverted when lockdown policies were relaxed. Moreover, small-scale lockdowns contributed little to environmental improvement. Our results have implications for assessing the environmental benefits of city-scale lockdowns.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Humans , COVID-19/epidemiology , Cities , Hot Temperature , Temperature , East Asian People , Nitrogen Dioxide , Environmental Monitoring , Communicable Disease Control , Respiratory Aerosols and Droplets , Air Pollution/analysis , Air Pollutants/analysis , Particulate Matter/analysis
2.
Anal Chem ; 94(40): 13810-13819, 2022 10 11.
Article in English | MEDLINE | ID: covidwho-2050235

ABSTRACT

Since the outbreak of coronavirus disease 2019 (COVID-19), the epidemic has been spreading around the world for more than 2 years. Rapid, safe, and on-site detection methods of COVID-19 are in urgent demand for the control of the epidemic. Here, we established an integrated system, which incorporates a machine-learning-based Fourier transform infrared spectroscopy technique for rapid COVID-19 screening and air-plasma-based disinfection modules to prevent potential secondary infections. A partial least-squares discrimination analysis and a convolutional neural network model were built using the collected infrared spectral dataset containing 857 training serum samples. Furthermore, the sensitivity, specificity, and prediction accuracy could all reach over 94% from the results of the field test regarding 968 blind testing samples. Additionally, the disinfection modules achieved an inactivation efficiency of 99.9% for surface and airborne tested bacteria. The proposed system is conducive and promising for point-of-care and on-site COVID-19 screening in the mass population.


Subject(s)
COVID-19 , COVID-19/diagnosis , Humans , Least-Squares Analysis , Neural Networks, Computer , Spectroscopy, Fourier Transform Infrared/methods
3.
J Hazard Mater ; 435: 129075, 2022 08 05.
Article in English | MEDLINE | ID: covidwho-1821354

ABSTRACT

In the context of spreading Coronavirus disease 2019 (COVID-19), the combination of heating, ventilation, and air-conditioning (HVAC) system with air disinfection device is an effective way to reduce transmissible infections. Atmospheric-pressure non-equilibrium plasma is an emerging technique for fast pathogen aerosol abatement. In this work, in-duct disinfectors based on grating-like dielectric barrier discharge (DBD) plasmas with varied electrode arrangements were established and evaluated. The highest airborne bacterial inactivation efficiency was achieved by 'vertical' structure, namely when aerosol was in direct contact with the discharge region, at a given discharge power. For all reactors, the efficiency was linearly correlated to the discharge power (R2 =0.929-0.994). The effects of environmental factors were examined. Decreased airflow rates boosted the efficiency, which reached 99.8% at the velocity of 0.5 m/s with an aerosol residence time of ~3.6 ms. Increasing humidity (relative humidity (RH)=20-60%) contributed to inactivation efficacy, while high humidity (RH=70%-90%) led to a saturated efficiency, possibly due to the disruption of discharge uniformity. As suggested by the plasma effluent treatment and scavenger experiments, gaseous short-lived chemical species or charged particles were concluded as the major agents accounting for bacterial inactivation. This research provides new hints for air disinfection by DBD plasmas.


Subject(s)
COVID-19 , Disinfection , Aerosols , COVID-19/prevention & control , Disinfection/methods , Gases , Humans , Ventilation
SELECTION OF CITATIONS
SEARCH DETAIL